Dynamics of terminal arbor formation and target approach of retinotectal axons in living zebrafish embryos: a time-lapse study of single axons.

نویسندگان

  • R J Kaethner
  • C A Stuermer
چکیده

In a variety of species, developing retinal axons branch initially more widely in their visual target centers and only gradually restrict their terminal arbors to smaller and defined territories. Retinotectal axons in fish, however, appeared to grow in a directed manner and to arborize only at their retinotopic target sites. To visualize the dynamics of retinal axon growth and arbor formation in fish, time-lapse recordings were made of individual retinal ganglion cell axons in the tectum in live zebrafish embryos. Axons were labeled with the fluorescent carbocyanine dyes Dil or DiO inserted as crystals into defined regions of the retina, viewed with 40x and 100x objectives with an SIT camera, and recorded, with exposure times of 200 msec at 30 or 60 sec intervals, over time periods of up to 13 hr. (1) Growth cones advanced rapidly, but the advance was punctuated by periods of rest. During the rest periods, the growth cones broadened and developed filopodia, but during extension they were more streamlined. (2) Growth cones traveled unerringly into the direction of their retinotopic targets without branching en route. At their target and only there, the axons began to form terminal arborizations, a process that involved the emission and retraction of numerous short side branches. The area that was permanently occupied or touched by transient branches of the terminal arbor--"the exploration field"--was small and almost circular and covered not more than 5.3% of the entire tectal surface area, but represented up to six times the size of the arbor at any one time. These findings are consistent with the idea that retinal axons are guided to their retinotopic target sites by sets of positional markers, with a graded distribution over the axes of the tectum.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth behavior of retinotectal axons in live zebrafish embryos under TTX-induced neural impulse blockade.

The growth dynamics of individual DiO-labeled retinal axons deprived of normal neural impulse activity by TTX was monitored in the tectum of living zebrafish embryos with time-lapse video microscopy and compared with normal active axons. Growth cones of TTX-blocked axons advance intermittently with an average velocity similar to normal axons. While exploring their local environment, they are br...

متن کامل

Development of the retinotectal projection in zebrafish embryos under TTX-induced neural-impulse blockade.

The influence of neural activity on the morphology of retinal-axon-terminal arbors and the precision of the developing retinotectal projection in zebrafish embryos was explored. Terminal-arbor morphology and their distribution in the tectum was determined with anatomical fiber-tracing methods using the fluorescent dyes dil and diO. To allow development under activity-deprived conditions, TTX wa...

متن کامل

Synaptic activity and activity-dependent competition regulates axon arbor maturation, growth arrest, and territory in the retinotectal projection.

In the retinotectal projection, synapses guide retinal ganglion cell (RGC) axon arbor growth by promoting branch formation and by selectively stabilizing branches. To ask whether presynaptic function is required for this dual role of synapses, we have suppressed presynaptic function in single RGCs using targeted expression of tetanus toxin light-chain fused to enhanced green fluorescent protein...

متن کامل

Repulsive Interactions Shape the Morphologies and Functional Arrangement of Zebrafish Peripheral Sensory Arbors

BACKGROUND Trigeminal sensory neurons detect thermal and mechanical stimuli in the skin through their elaborately arborized peripheral axons. We investigated the developmental mechanisms that determine the size and shape of individual trigeminal arbors in zebrafish and analyzed how these interactions affect the functional organization of the peripheral sensory system. RESULTS Time-lapse imagi...

متن کامل

Quantitative Analysis of Axonal Branch Dynamics in the Developing Nervous System

Branching is an important mechanism by which axons navigate to their targets during neural development. For instance, in the developing zebrafish retinotectal system, selective branching plays a critical role during both initial pathfinding and subsequent arborisation once the target zone has been reached. Here we show how quantitative methods can help extract new information from time-lapse im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 12 8  شماره 

صفحات  -

تاریخ انتشار 1992